Sequence 9 in Pi

Is there a number 9 in Pi?

Answer: Sequence 9 appears 106 times in the first 1,000 pi digits

Probability

First Digits Times 9 occurs Chance for n timesChance for 1+ times
1,0001053.4401 % 100%

9 appears in Pi

PositionDigits
5 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
12 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
14 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
30 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
38 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
42 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
44 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
45 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
55 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
58 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
62 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
79 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
80 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
100 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
122 2862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385
1299862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555
144 1706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493
169 7093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446
180 5058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823
187 1725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783
190 5359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165
1939408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271
199 8481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909
208 0284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566
214 2701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460
247 1964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141
249 6442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127
259 5665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006
284 7831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628
294 0190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171
328 8213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466
331 3393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521
336 0726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414
341 2491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519
353 5870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330
356 0066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572
388 4091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611
391 1715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793
399 6789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854
414 3053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274
416 5305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495
418 0548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567
422 8204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518
433 4146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891
4409415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381
459 6575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336
460 5759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362
4659195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065
4829326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463
487 1793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224
496 8548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702
498 4807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217
501 7446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986
527 7248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767
529 4891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752
533 2279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846
542 0119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676
549 2983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513
553 3673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000
564 5664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526
572 0213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277
594 0217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363
636 1846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079
639 6766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227
658 7145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956
664 3560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129
675 7134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403
686 6091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136
690 7363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977
693 3717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477
697 8721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309
705 4090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870
706 0901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707
714 5343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999
718 0146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998
732 5079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105
738 7968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173
747 2354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631
748 3542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318
762 2902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534
7639021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346
764 0219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469
765 2196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690
766 1960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908
7679608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083
772 4034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642
777 1815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230
778 8159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308
783 1362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334
794 3099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619
800 5187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881
807 1134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000
8149998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838
844 6318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669
894 3118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375
902 0100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818
908 1378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805
924 3320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300
941 6691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092
946 7303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420
976 2863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865
986 7875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818
988 7593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827
9909375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796
998 7818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019
1,000 1857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952
You can also download files with Pi digits here (TXT and ZIP, up to 1 billion digits)

Interesting facts about Pi

The sequence 6666666666 is the only 10+ digit single-digit number that is contained in the first billion digits of Pi. It appears at 386,980,412 position.


The sequence 999999 occurs in the first 1,000 digits of pi. Chance of this is less than 0.0995% (1 in 1,005)

It's also called Feynman Point: One of the most famous sequences within Pi occurs at the 762nd decimal place, where six consecutive nines appear. This sequence is known as the "Feynman Point" after physicist Richard Feynman, who jokingly claimed that he wanted to memorize the digits of Pi up to this point so he could recite them and end with "nine nine nine nine nine nine and so on," implying that Pi is rational.


March 14th (3/14) is celebrated worldwide as Pi Day because the date resembles the first three digits of Pi (3.14). Pi Day was officially recognized by the U.S. House of Representatives in 2009, and it's celebrated with pie eating, discussions about Pi, and even pi-reciting competitions.


Randomness in Pi: Although the digits of Pi appear random and no pattern has been discerned, Pi is used in random number generation and simulations, further highlighting its utility and intrigue in scientific and mathematical applications.


There are no occurrences of the sequence 123456 in the first 2 millions digits of Pi. It appears only at 2,458,885 position. Although, the probability of encountering any sequence of 6 characters in this segment is quite high.


Pi has a 12345 sequence in the first 50k digits. It appears at 49,702 position


Sequence 123456789 appears 2 times in the first billion digits of Pi.

What is Pi number?

Pi (π) is a fundamental mathematical constant representing the ratio of a circle's circumference to its diameter. This ratio remains constant for all circles, making pi an essential element in various fields of mathematics and science, especially in geometry, trigonometry, and calculus. Pi is an irrational number, meaning it cannot be expressed as a simple fraction, and it is also transcendental, indicating that it is not a root of any non-zero polynomial equation with rational coefficients.

The value of Pi is approximately 3.14159, but its decimal representation goes on infinitely without repeating, showcasing an endless, non-repeating sequence of digits beyond the decimal point. Due to its infinite nature, pi is usually approximated in calculations, with varying degrees of precision depending on the requirements of the specific application, such as 3.14, 22/7, or more precise decimal representations for more accurate calculations in scientific research and engineering projects. The study and computational quest to determine more digits of pi is a continuing effort in the mathematical community, symbolizing both the pursuit of knowledge and the limits of computational precision.

See Also

About "Pi Sequence Finder" Calculator

Explore the fascinating world of Pi with our Pi Sequence Finder, an advanced online tool designed to determine if your specific numerical sequence can be found in the infinite digits of Pi

For example, it can help you find out is there a number 9 in Pi? (The answer is: 106 times).

Simply enter your sequence of numbers (e.g. 9), and our tool will quickly search through the digits of Pi to find a match.

This tool is perfect for mathematicians, educators, students, and Pi enthusiasts who are curious to see if personal numbers, such as birthdays or special dates, appear in this mystical mathematical constant.

Whether you're a seasoned mathematician or just a curious mind, our Pi Sequence Finder offers an engaging way to explore the depths of Pi.

FAQ

Is there a number 9 in Pi?

Sequence 9 appears 106 times in the first 1,000 pi digits