Sequence 12 in Pi

Is there a number 12 in Pi?

Answer: Sequence 12 appears 103 times in the first 10,000 pi digits

Probability

First Digits Times 12 occurs Chance for n timesChance for 1+ times
1,0001111.3622 % 99.9956%
10,0001033.7554 % 100%

12 appears in Pi

PositionDigits
148 7982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381
220 8521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610
243 3038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024
297 0914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536
483 3261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639
499 8074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179
607 2770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440
660 4526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611
710 2249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113
712 4953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349
963 5546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106
1,080 5338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311
1,199 3817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374
1,299 4944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351
1,350 9331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279
1,425 7326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692
1,843 5784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210
1,864 4100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039
1,924 5604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865
2,013 6241389086583264599581339047802759009946576407895126946839835259570982582262052248940772671947826848
2,287 1049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997
2,295 2468084598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961
2,307 7364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486
2,341 8051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158
2,498 9864565961163548862305774564980355936345681743241125150760694794510965960940252288797108931456691368
2,632 0874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379
2,938 4680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907
2,976 5444064374512371819217999839101591956181467514269123974894090718649423196156794520809514655022523160
3,258 0665879699816357473638405257145910289706414011097120628043903975951567715770042033786993600723055876
3,322 9515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164
3,328 7157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470609
3,346 6007230558763176359421873125147120532928191826186125867321579198414848829164470609575270695722091756
3,426 0957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914
3,455 0981690915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111
3,499 6572512108357915136988209144421006751033467110314126711136990865851639831501970165151168517143765761
3,690 7091548141654985946163718027098199430992448895757128289059232332609729971208443357326548938239119325
3,713 1802709819943099244889575712828905923233260972997120844335732654893823911932597463667305836041428138
3,823 9037589852437441702913276561809377344403070746921120191302033038019762110110044929321516084244485963
3,892 2110110044929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077
4,056 0925471105578537634668206531098965269186205647693125705863566201855810072936065987648611791045334885
4,160 1136576867532494416680396265797877185560845529654126654085306143444318586769751456614068007002378776
4,220 6143444318586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699
4,252 0237877659134401712749470420562230538994561314071127000407854733269939081454664645880797270826683063
4,372 8933065757406795457163775254202114955761581400250126228594130216471550979259230990796547376125517656
4,414 1400250126228594130216471550979259230990796547376125517656751357517829666454779174501129961489030463
4,450 0990796547376125517656751357517829666454779174501129961489030463994713296210734043751895735961458901
4,559 1790429782856475032031986915140287080859904801094121472213179476477726224142548545403321571853061422
4,728 1465406284336639379003976926567214638530673609657120918076383271664162748888007869256029022847210403
4,975 8933309634087807693259939780541934144737744184263129860809988868741326047215695162396586457302163159
5,040 4132604721569516239658645730216315981931951673538129741677294786724229246543668009806769282382806899
5,182 0706977942236250822168895738379862300159377647165122893578601588161755782973523344604281512627203734
5,222 3776471651228935786015881617557829735233446042815126272037343146531977774160319906655418763979293344
5,361 1318148092777710386387734317720754565453220777092120190516609628049092636019759882816133231666365286
5,505 5471058595487027908143562401451718062464362679456127531813407833033625423278394497538243720583531147
5,711 7907707157213444730605700733492436931138350493163128404251219256517980694113528013147013047816437885
5,719 5721344473060570073349243693113835049316312840425121925651798069411352801314701304781643788518529092
6,281 6513005005168323364350389517029893922334517220138128069650117844087451960121228599371623130171144484
6,305 9517029893922334517220138128069650117844087451960121228599371623130171144484640903890644954440061986
6,307 1702989392233451722013812806965011784408745196012122859937162313017114448464090389064495444006198690
6,548 4746119966538581538420568533862186725233402830871123282789212507712629463229563989898935821167456270
6,558 5385815384205685338621867252334028308711232827892125077126294632295639898989358211674562701021835646
6,564 5384205685338621867252334028308711232827892125077126294632295639898989358211674562701021835646220134
6,985 2298827372319898757141595781119635833005940873068121602876496286744604774649159950549737425626901049
7,057 4649159950549737425626901049037781986835938146574126804925648798556145372347867330390468838343634655
7,145 8383436346553794986419270563872931748723320837601123029911367938627089438799362016295154133714248928
7,202 1367938627089438799362016295154133714248928307220126901475466847653576164773794675200490757155527819
7,465 6325691607815478181152843667957061108615331504452127473924544945423682886061340841486377670096120715
7,510 4452127473924544945423682886061340841486377670096120715124914043027253860764823634143346235189757664
7,516 7473924544945423682886061340841486377670096120715124914043027253860764823634143346235189757664521641
7,674 4411739403265918404437805133389452574239950829659122850855582157250310712570126683024029295252201187
7,696 8051333894525742399508296591228508555821572503107125701266830240292952522011872676756220415420516184
7,701 3389452574239950829659122850855582157250310712570126683024029295252201187267675622041542051618416348
7,841 0288400269104140792886215078424516709087000699282120660418371806535567252532567532861291042487761825
7,876 0908700069928212066041837180653556725253256753286129104248776182582976515795984703562226293486003415
7,998 7487882027342092222453398562647669149055628425039127577102840279980663658254889264880254566101729670
8,088 6101729670266407655904290994568150652653053718294127033693137851786090407086671149655834343476933857
8,156 9040708667114965583434347693385781711386455873678123014587687126603489139095620099393610310291616152
8,168 4965583434347693385781711386455873678123014587687126603489139095620099393610310291616152881384379099
8,393 7517034436619910403375111735471918550464490263655128162288244625759163330391072253837421821408835086
8,597 2765848358845314277568790029095170283529716344562129640435231176006651012412006597558512761785838292
8,619 7900290951702835297163445621296404352311760066510124120065975585127617858382920419748442360800719304
8,622 0290951702835297163445621296404352311760066510124120065975585127617858382920419748442360800719304576
8,634 5297163445621296404352311760066510124120065975585127617858382920419748442360800719304576189323492292
8,699 1974844236080071930457618932349229279650198751872127267507981255470958904556357921221033346697499235
8,710 8007193045761893234922927965019875187212726750798125547095890455635792122103334669749923563025494780
8,731 2927965019875187212726750798125547095890455635792122103334669749923563025494780249011419521238281530
8,772 5563579212210333466974992356302549478024901141952123828153091140790738602515227429958180724716259166
8,831 9114079073860251522742995818072471625916685451333123948049470791191532673430282441860414263639548000
9,130 1844396582533754388569094113031509526179378002974120766514793942590298969594699556576121865619673378
9,166 6179378002974120766514793942590298969594699556576121865619673378623625612521632086286922210327488921
9,188 7939425902989695946995565761218656196733786236256125216320862869222103274889218654364802296780705765
9,259 7488921865436480229678070576561514463204692790682120738837781423356282360896320806822246801224826117
9,300 9279068212073883778142335628236089632080682224680122482611771858963814091839036736722208883215137556
9,416 2970028783076670944474560134556417254370906979396122571429894671543578468788614445812314593571984922
9,450 2543709069793961225714298946715435784687886144458123145935719849225284716050492212424701412147805734
9,481 4357846878861444581231459357198492252847160504922124247014121478057345510500801908699603302763478708
9,490 8861444581231459357198492252847160504922124247014121478057345510500801908699603302763478708108175450
9,549 4551050080190869960330276347870810817545011930714122339086639383395294257869050764310063835198343893
9,657 8543475464955697810382930971646514384070070736041123735998434522516105070270562352660127648483084076
9,693 4070070736041123735998434522516105070270562352660127648483084076118301305279320542746286540360367453
9,887 0559240190274216248439140359989535394590944070469120914093870012645600162374288021092764579310657922
9,900 2162484391403599895353945909440704691209140938700126456001623742880210927645793106579229552498872758
9,955 0016237428802109276457931065792295524988727584610126483699989225695968815920560010165525637567856672
You can also download files with Pi digits here (TXT and ZIP, up to 1 billion digits)

Interesting facts about Pi

The sequence 6666666666 is the only 10+ digit single-digit number that is contained in the first billion digits of Pi. It appears at 386,980,412 position.


The sequence 999999 occurs in the first 1,000 digits of pi. Chance of this is less than 0.0995% (1 in 1,005)

It's also called Feynman Point: One of the most famous sequences within Pi occurs at the 762nd decimal place, where six consecutive nines appear. This sequence is known as the "Feynman Point" after physicist Richard Feynman, who jokingly claimed that he wanted to memorize the digits of Pi up to this point so he could recite them and end with "nine nine nine nine nine nine and so on," implying that Pi is rational.


March 14th (3/14) is celebrated worldwide as Pi Day because the date resembles the first three digits of Pi (3.14). Pi Day was officially recognized by the U.S. House of Representatives in 2009, and it's celebrated with pie eating, discussions about Pi, and even pi-reciting competitions.


Randomness in Pi: Although the digits of Pi appear random and no pattern has been discerned, Pi is used in random number generation and simulations, further highlighting its utility and intrigue in scientific and mathematical applications.


There are no occurrences of the sequence 123456 in the first 2 millions digits of Pi. It appears only at 2,458,885 position. Although, the probability of encountering any sequence of 6 characters in this segment is quite high.


Pi has a 12345 sequence in the first 50k digits. It appears at 49,702 position


Sequence 123456789 appears 2 times in the first billion digits of Pi.

What is Pi number?

Pi (π) is a fundamental mathematical constant representing the ratio of a circle's circumference to its diameter. This ratio remains constant for all circles, making pi an essential element in various fields of mathematics and science, especially in geometry, trigonometry, and calculus. Pi is an irrational number, meaning it cannot be expressed as a simple fraction, and it is also transcendental, indicating that it is not a root of any non-zero polynomial equation with rational coefficients.

The value of Pi is approximately 3.14159, but its decimal representation goes on infinitely without repeating, showcasing an endless, non-repeating sequence of digits beyond the decimal point. Due to its infinite nature, pi is usually approximated in calculations, with varying degrees of precision depending on the requirements of the specific application, such as 3.14, 22/7, or more precise decimal representations for more accurate calculations in scientific research and engineering projects. The study and computational quest to determine more digits of pi is a continuing effort in the mathematical community, symbolizing both the pursuit of knowledge and the limits of computational precision.

See Also

About "Pi Sequence Finder" Calculator

Explore the fascinating world of Pi with our Pi Sequence Finder, an advanced online tool designed to determine if your specific numerical sequence can be found in the infinite digits of Pi

For example, it can help you find out is there a number 12 in Pi? (The answer is: 103 times).

Simply enter your sequence of numbers (e.g. 12), and our tool will quickly search through the digits of Pi to find a match.

This tool is perfect for mathematicians, educators, students, and Pi enthusiasts who are curious to see if personal numbers, such as birthdays or special dates, appear in this mystical mathematical constant.

Whether you're a seasoned mathematician or just a curious mind, our Pi Sequence Finder offers an engaging way to explore the depths of Pi.

FAQ

Is there a number 12 in Pi?

Sequence 12 appears 103 times in the first 10,000 pi digits