Sequence 4 in Pi

Is there a number 4 in Pi?

Answer: Sequence 4 appears 93 times in the first 1,000 pi digits

Probability

First Digits Times 4 occurs Chance for n timesChance for 1+ times
1,000933.2159 % 100%

4 appears in Pi

PositionDigits
2 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
19 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
23 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
36 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
57 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
59 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
60 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
70 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
87 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
92 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
104 9749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811
1194062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019
125 2089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211
126 0899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110
145 7067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930
151 2148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964
157 6513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810
162 8230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566
182 5822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337
183 8223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378
188 7253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831
192 5940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527
201 8111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914
202 1117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145
217 1938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348
218 9385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486
223 1105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454
227 5596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266
2514288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737
254 8109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245
262 5933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606
2664461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155
271 8475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174
273 7564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488
278 2337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209
293 2019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917
296 9091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153
3034856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789
321 5432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054
339 6024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695
348 7372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160
371 8815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530
376 0920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186
384 2925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193
386 2540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326
392 7153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931
400 7892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548
4494330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491
453 5727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983
454 7270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833
464 5919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406
480 8193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494
497 5480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021
511 2749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770
512 7495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705
518 3518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171
528 2489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675
530 8912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523
537 3818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481
554 6733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005
582 9522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275
585 2473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778
589 7190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609
595 2179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637
611 5392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012
629 3846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853
652 0568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542
655 8127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019
656 1271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199
663 6356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212
667 0827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021
671 7857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608
674 7713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640
7014684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605
7234958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297
726 8537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804
727 5371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049
741 8925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281
761 1290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553
7764181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223
804 0721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101
805 7211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010
808 1349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003
812 9999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378
821 9780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865
833 7317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814
834 3173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142
8834685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882
896 1881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519
907 3137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780
910 7838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532
916 2886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226
994 1957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230
You can also download files with Pi digits here (TXT and ZIP, up to 1 billion digits)

Interesting facts about Pi

The sequence 6666666666 is the only 10+ digit single-digit number that is contained in the first billion digits of Pi. It appears at 386,980,412 position.


The sequence 999999 occurs in the first 1,000 digits of pi. Chance of this is less than 0.0995% (1 in 1,005)

It's also called Feynman Point: One of the most famous sequences within Pi occurs at the 762nd decimal place, where six consecutive nines appear. This sequence is known as the "Feynman Point" after physicist Richard Feynman, who jokingly claimed that he wanted to memorize the digits of Pi up to this point so he could recite them and end with "nine nine nine nine nine nine and so on," implying that Pi is rational.


March 14th (3/14) is celebrated worldwide as Pi Day because the date resembles the first three digits of Pi (3.14). Pi Day was officially recognized by the U.S. House of Representatives in 2009, and it's celebrated with pie eating, discussions about Pi, and even pi-reciting competitions.


Randomness in Pi: Although the digits of Pi appear random and no pattern has been discerned, Pi is used in random number generation and simulations, further highlighting its utility and intrigue in scientific and mathematical applications.


There are no occurrences of the sequence 123456 in the first 2 millions digits of Pi. It appears only at 2,458,885 position. Although, the probability of encountering any sequence of 6 characters in this segment is quite high.


Pi has a 12345 sequence in the first 50k digits. It appears at 49,702 position


Sequence 123456789 appears 2 times in the first billion digits of Pi.

What is Pi number?

Pi (π) is a fundamental mathematical constant representing the ratio of a circle's circumference to its diameter. This ratio remains constant for all circles, making pi an essential element in various fields of mathematics and science, especially in geometry, trigonometry, and calculus. Pi is an irrational number, meaning it cannot be expressed as a simple fraction, and it is also transcendental, indicating that it is not a root of any non-zero polynomial equation with rational coefficients.

The value of Pi is approximately 3.14159, but its decimal representation goes on infinitely without repeating, showcasing an endless, non-repeating sequence of digits beyond the decimal point. Due to its infinite nature, pi is usually approximated in calculations, with varying degrees of precision depending on the requirements of the specific application, such as 3.14, 22/7, or more precise decimal representations for more accurate calculations in scientific research and engineering projects. The study and computational quest to determine more digits of pi is a continuing effort in the mathematical community, symbolizing both the pursuit of knowledge and the limits of computational precision.

See Also

About "Pi Sequence Finder" Calculator

Explore the fascinating world of Pi with our Pi Sequence Finder, an advanced online tool designed to determine if your specific numerical sequence can be found in the infinite digits of Pi

For example, it can help you find out is there a number 4 in Pi? (The answer is: 93 times).

Simply enter your sequence of numbers (e.g. 4), and our tool will quickly search through the digits of Pi to find a match.

This tool is perfect for mathematicians, educators, students, and Pi enthusiasts who are curious to see if personal numbers, such as birthdays or special dates, appear in this mystical mathematical constant.

Whether you're a seasoned mathematician or just a curious mind, our Pi Sequence Finder offers an engaging way to explore the depths of Pi.

FAQ

Is there a number 4 in Pi?

Sequence 4 appears 93 times in the first 1,000 pi digits