Sequence 0 in Pi

Is there a number 0 in Pi?

Answer: Sequence 0 appears 93 times in the first 1,000 pi digits

Probability

First Digits Times 0 occurs Chance for n timesChance for 1+ times
1,000933.2159 % 100%

0 appears in Pi

PositionDigits
32 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
50 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
54 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
65 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
71 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
77 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
85 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
97 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
106 4944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117
116 8164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027
121 6286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938
128 9986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055
132 2803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964
1460679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303
159 1328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097
164 3066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659
167 6470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334
176 6095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756
1950812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120
207 5028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856
245 3819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491
248 9644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412
264 3344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631
270 2847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817
287 1652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292
291 7120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409
307 6923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590
308 9234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903
311 4603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600
327 4821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046
330 1339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652
3400249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951
3570660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727
3600631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036
361 6315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365
366 8817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959
369 7488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195
375 2092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218
398 3678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185
403 2590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074
408 6001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237
421 8820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351
443 5116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830
451 3057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129
493 5118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190
513 4956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053
520 1885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176
523 5752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293
543 1194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766
545 9491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694
552 3367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200
557 3624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681
561 4065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714
596 1798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371
6010943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721
602 9437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214
603 4370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146
618 7629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343
638 4676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922
657 2714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995
659 1452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561
669 2778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196
682 7789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159
684 8960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981
703 8440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518
715 3430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999
720 4654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837
724 9585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978
746 9235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963
750 4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859
755 9561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244
775 4418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522
781 9813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253
793 1309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261
802 8707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171
815 9983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387
818 3729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528
827 9510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332
838 2816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617
853 4459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598
855 5945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825
856 9455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253
857 4553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534
878 2533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628
885 8503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235
899 1710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577
909 3783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053
957 9042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525
968 7311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858
973 9562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278
974 5628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788
989 5937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279
996 5778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030
You can also download files with Pi digits here (TXT and ZIP, up to 1 billion digits)

Interesting facts about Pi

The sequence 6666666666 is the only 10+ digit single-digit number that is contained in the first billion digits of Pi. It appears at 386,980,412 position.


The sequence 999999 occurs in the first 1,000 digits of pi. Chance of this is less than 0.0995% (1 in 1,005)

It's also called Feynman Point: One of the most famous sequences within Pi occurs at the 762nd decimal place, where six consecutive nines appear. This sequence is known as the "Feynman Point" after physicist Richard Feynman, who jokingly claimed that he wanted to memorize the digits of Pi up to this point so he could recite them and end with "nine nine nine nine nine nine and so on," implying that Pi is rational.


March 14th (3/14) is celebrated worldwide as Pi Day because the date resembles the first three digits of Pi (3.14). Pi Day was officially recognized by the U.S. House of Representatives in 2009, and it's celebrated with pie eating, discussions about Pi, and even pi-reciting competitions.


Randomness in Pi: Although the digits of Pi appear random and no pattern has been discerned, Pi is used in random number generation and simulations, further highlighting its utility and intrigue in scientific and mathematical applications.


There are no occurrences of the sequence 123456 in the first 2 millions digits of Pi. It appears only at 2,458,885 position. Although, the probability of encountering any sequence of 6 characters in this segment is quite high.


Pi has a 12345 sequence in the first 50k digits. It appears at 49,702 position


Sequence 123456789 appears 2 times in the first billion digits of Pi.

What is Pi number?

Pi (π) is a fundamental mathematical constant representing the ratio of a circle's circumference to its diameter. This ratio remains constant for all circles, making pi an essential element in various fields of mathematics and science, especially in geometry, trigonometry, and calculus. Pi is an irrational number, meaning it cannot be expressed as a simple fraction, and it is also transcendental, indicating that it is not a root of any non-zero polynomial equation with rational coefficients.

The value of Pi is approximately 3.14159, but its decimal representation goes on infinitely without repeating, showcasing an endless, non-repeating sequence of digits beyond the decimal point. Due to its infinite nature, pi is usually approximated in calculations, with varying degrees of precision depending on the requirements of the specific application, such as 3.14, 22/7, or more precise decimal representations for more accurate calculations in scientific research and engineering projects. The study and computational quest to determine more digits of pi is a continuing effort in the mathematical community, symbolizing both the pursuit of knowledge and the limits of computational precision.

See Also

About "Pi Sequence Finder" Calculator

Explore the fascinating world of Pi with our Pi Sequence Finder, an advanced online tool designed to determine if your specific numerical sequence can be found in the infinite digits of Pi

For example, it can help you find out is there a number 0 in Pi? (The answer is: 93 times).

Simply enter your sequence of numbers (e.g. 0), and our tool will quickly search through the digits of Pi to find a match.

This tool is perfect for mathematicians, educators, students, and Pi enthusiasts who are curious to see if personal numbers, such as birthdays or special dates, appear in this mystical mathematical constant.

Whether you're a seasoned mathematician or just a curious mind, our Pi Sequence Finder offers an engaging way to explore the depths of Pi.

FAQ

Is there a number 0 in Pi?

Sequence 0 appears 93 times in the first 1,000 pi digits