LCM for 18 and 25
What's the Least Common Multiple (LCM) of 18 and 25?
(Four hundred fifty)
Finding LCM for 18 and 25 using GCF's of these numbers
The first method to find LCM for numbers 18 and 25 is to find Greatest Common Factor (GCF) of these numbers. Here's the formula:
LCM = (Number1 × Number2) ÷ GCF
GCF of numbers 18 and 25 is 1, so
LCM = (18 × 25) ÷ 1
LCM = 450 ÷ 1
LCM = 450
Finding LCM for 18 and 25 by Listing Multiples
The second method to find LCM for numbers 18 and 25 is to list out the common multiples for both nubmers and pick the first which matching:
Multiples of 18: 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306, 324, 342, 360, 378, 396, 414, 432, 450, 468, 486
Multiples of 25: 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500
So the LCM for 18 and 25 is 450
Finding LCM for 18 and 25 by Prime Factorization
Another method to find LCM for numbers 18 and 25 is to list all Prime Factors for both numbers and multiply the highest exponent prime factors:
All Prime Factors of 18: 2, 3, 3 (exponent form: 21, 32)
All Prime Factors of 25: 5, 5 (exponent form: 52)
21 × 32 × 52 = 450
Related Calculations
See Also
- Greatest Common Factor - Find the Greatest Common Factor (GCF) of two numbers
LCM Table
About "Least Common Multiple" Calculator
Least Common Multiple (LCM) also known as the Lowest Common Multiple or Smallest Common Multiple of 2 numbers - it is the smallest positive integer that is divisible by both numbers