LCM for 48 and 96
What's the Least Common Multiple (LCM) of 48 and 96?
(Ninety-six)
Finding LCM for 48 and 96 using GCF's of these numbers
The first method to find LCM for numbers 48 and 96 is to find Greatest Common Factor (GCF) of these numbers. Here's the formula:
LCM = (Number1 × Number2) ÷ GCF
GCF of numbers 48 and 96 is 48, so
LCM = (48 × 96) ÷ 48
LCM = 4608 ÷ 48
LCM = 96
Finding LCM for 48 and 96 by Listing Multiples
The second method to find LCM for numbers 48 and 96 is to list out the common multiples for both nubmers and pick the first which matching:
Multiples of 48: 48, 96, 144, 192
Multiples of 96: 96, 192, 288, 384, 480, 576, 672, 768, 864, 960, 1056, 1152, 1248, 1344, 1440, 1536, 1632, 1728, 1824, 1920, 2016, 2112, 2208, 2304, 2400, 2496, 2592, 2688, 2784, 2880, 2976, 3072, 3168, 3264, 3360, 3456, 3552, 3648, 3744, 3840, 3936, 4032, 4128, 4224, 4320, 4416, 4512, 4608, 4704, 4800, 4896, 4992, 5088, 5184, 5280, 5376, 5472, 5568, 5664, 5760, 5856, 5952, 6048, 6144, 6240, 6336, 6432, 6528, 6624, 6720, 6816, 6912, 7008, 7104, 7200, 7296, 7392, 7488, 7584, 7680, 7776, 7872, 7968, 8064, 8160, 8256, 8352, 8448, 8544, 8640, 8736, 8832, 8928, 9024, 9120, 9216, 9312, 9408, 9504, 9600, 9696, 9792, 9888, 9984, 10080, 10176, 10272, 10368, 10464, 10560, 10656, 10752, 10848, 10944, 11040, 11136, 11232, 11328, 11424, 11520, 11616, 11712, 11808, 11904, 12000, 12096, 12192, 12288, 12384, 12480, 12576, 12672, 12768, 12864, 12960, 13056, 13152, 13248, 13344, 13440, 13536, 13632, 13728, 13824, 13920, 14016, 14112, 14208, 14304, 14400, 14496, 14592, 14688, 14784, 14880, 14976, 15072, 15168, 15264, 15360, 15456, 15552, 15648, 15744, 15840, 15936, 16032, 16128, 16224, 16320, 16416, 16512, 16608, 16704, 16800, 16896, 16992, 17088, 17184, 17280, 17376, 17472, 17568, 17664, 17760, 17856, 17952, 18048, 18144, 18240, 18336, 18432, 18528, 18624, 18720, 18816, 18912, 19008, 19104, 19200, 19296, 19392, 19488, 19584, 19680, 19776, 19872, 19968, 20064, 20160, 20256, 20352, 20448, 20544, 20640, 20736, 20832, 20928, 21024, 21120, 21216, 21312, 21408, 21504, 21600, 21696, 21792, 21888, 21984, 22080, 22176, 22272, 22368, 22464, 22560, 22656, 22752, 22848, 22944, 23040, 23136, 23232, 23328, 23424, 23520, 23616, 23712, 23808, 23904, 24000, 24096, 24192, 24288, 24384, 24480, 24576, 24672, 24768, 24864, 24960, 25056, 25152, 25248, 25344, 25440, 25536, 25632, 25728, 25824, 25920, 26016, 26112, 26208, 26304, 26400, 26496, 26592, 26688, 26784, 26880, 26976, 27072, 27168, 27264, 27360, 27456, 27552, 27648, 27744, 27840, 27936, 28032, 28128, 28224, 28320, 28416, 28512, 28608, 28704, 28800, 28896, 28992, 29088, 29184, 29280, 29376, 29472, 29568, 29664, 29760, 29856, 29952, 30048, 30144, 30240, 30336, 30432, 30528, 30624, 30720, 30816, 30912, 31008, 31104, 31200, 31296, 31392, 31488, 31584, 31680, 31776, 31872, 31968, 32064, 32160, 32256, 32352, 32448, 32544, 32640, 32736, 32832, 32928, 33024, 33120, 33216, 33312, 33408, 33504, 33600, 33696, 33792, 33888, 33984, 34080, 34176, 34272, 34368, 34464, 34560, 34656, 34752, 34848, 34944, 35040, 35136, 35232, 35328, 35424, 35520, 35616, 35712, 35808, 35904, 36000, 36096, 36192, 36288, 36384, 36480, 36576, 36672, 36768, 36864, 36960, 37056, 37152, 37248, 37344, 37440, 37536, 37632, 37728, 37824, 37920, 38016, 38112, 38208, 38304, 38400, 38496, 38592, 38688, 38784, 38880, 38976, 39072, 39168, 39264, 39360, 39456, 39552, 39648, 39744, 39840, 39936, 40032, 40128, 40224, 40320, 40416, 40512, 40608, 40704, 40800, 40896, 40992, 41088, 41184, 41280, 41376, 41472, 41568, 41664, 41760, 41856, 41952, 42048, 42144, 42240, 42336, 42432, 42528, 42624, 42720, 42816, 42912, 43008, 43104, 43200, 43296, 43392, 43488, 43584, 43680, 43776, 43872, 43968, 44064, 44160, 44256, 44352, 44448, 44544, 44640, 44736, 44832, 44928, 45024, 45120, 45216, 45312, 45408, 45504, 45600, 45696, 45792, 45888, 45984, 46080, 46176, 46272, 46368, 46464, 46560, 46656, 46752, 46848, 46944, 47040, 47136, 47232, 47328, 47424, 47520, 47616, 47712, 47808, 47904, 48000, 48096, 48192, 48288, 48384, 48480, 48576, 48672, 48768, 48864, 48960, 49056, 49152, 49248, 49344, 49440, 49536, 49632, 49728, 49824, 49920, 50016, 50112, 50208, 50304, 50400, 50496, 50592, 50688, 50784, 50880, 50976, 51072, 51168, 51264, 51360, 51456, 51552, 51648, 51744, 51840, 51936, 52032, 52128, 52224, 52320, 52416, 52512, 52608, 52704, 52800, 52896, 52992, 53088, 53184, 53280, 53376, 53472, 53568, 53664, 53760, 53856, 53952, 54048, 54144, 54240, 54336, 54432, 54528, 54624, 54720, 54816, 54912, 55008, 55104, 55200, 55296, 55392, 55488, 55584, 55680, 55776, 55872, 55968, 56064, 56160, 56256, 56352, 56448, 56544, 56640, 56736, 56832, 56928, 57024, 57120, 57216, 57312, 57408, 57504, 57600, 57696, 57792, 57888, 57984, 58080, 58176, 58272, 58368, 58464, 58560, 58656, 58752, 58848, 58944, 59040, 59136, 59232, 59328, 59424, 59520, 59616, 59712, 59808, 59904, 60000, 60096, 60192, 60288, 60384, 60480, 60576, 60672, 60768, 60864, 60960, 61056, 61152, 61248, 61344, 61440, 61536, 61632, 61728, 61824, 61920, 62016, 62112, 62208, 62304, 62400, 62496, 62592, 62688, 62784, 62880, 62976, 63072, 63168, 63264, 63360, 63456, 63552, 63648, 63744, 63840, 63936, 64032, 64128, 64224, 64320, 64416, 64512, 64608, 64704, 64800, 64896, 64992, 65088, 65184, 65280, 65376, 65472, 65568, 65664, 65760, 65856, 65952, 66048, 66144, 66240, 66336, 66432, 66528, 66624, 66720, 66816, 66912, 67008, 67104, 67200, 67296, 67392, 67488, 67584, 67680, 67776, 67872, 67968, 68064, 68160, 68256, 68352, 68448, 68544, 68640, 68736, 68832, 68928, 69024, 69120, 69216, 69312, 69408, 69504, 69600, 69696, 69792, 69888, 69984, 70080, 70176, 70272, 70368, 70464, 70560, 70656, 70752, 70848, 70944, 71040, 71136, 71232, 71328, 71424, 71520, 71616, 71712, 71808, 71904, 72000, 72096, 72192, 72288, 72384, 72480, 72576, 72672, 72768, 72864, 72960, 73056, 73152, 73248, 73344, 73440, 73536, 73632, 73728, 73824, 73920, 74016, 74112, 74208, 74304, 74400, 74496, 74592, 74688, 74784, 74880, 74976, 75072, 75168, 75264, 75360, 75456, 75552, 75648, 75744, 75840, 75936, 76032, 76128, 76224, 76320, 76416, 76512, 76608, 76704, 76800, 76896, 76992, 77088, 77184, 77280, 77376, 77472, 77568, 77664, 77760, 77856, 77952, 78048, 78144, 78240, 78336, 78432, 78528, 78624, 78720, 78816, 78912, 79008, 79104, 79200, 79296, 79392, 79488, 79584, 79680, 79776, 79872, 79968, 80064, 80160, 80256, 80352, 80448, 80544, 80640, 80736, 80832, 80928, 81024, 81120, 81216, 81312, 81408, 81504, 81600, 81696, 81792, 81888, 81984, 82080, 82176, 82272, 82368, 82464, 82560, 82656, 82752, 82848, 82944, 83040, 83136, 83232, 83328, 83424, 83520, 83616, 83712, 83808, 83904, 84000, 84096, 84192, 84288, 84384, 84480, 84576, 84672, 84768, 84864, 84960, 85056, 85152, 85248, 85344, 85440, 85536, 85632, 85728, 85824, 85920, 86016, 86112, 86208, 86304, 86400, 86496, 86592, 86688, 86784, 86880, 86976, 87072, 87168, 87264, 87360, 87456, 87552, 87648, 87744, 87840, 87936, 88032, 88128, 88224, 88320, 88416, 88512, 88608, 88704, 88800, 88896, 88992, 89088, 89184, 89280, 89376, 89472, 89568, 89664, 89760, 89856, 89952, 90048, 90144, 90240, 90336, 90432, 90528, 90624, 90720, 90816, 90912, 91008, 91104, 91200, 91296, 91392, 91488, 91584, 91680, 91776, 91872, 91968, 92064, 92160, 92256, 92352, 92448, 92544, 92640, 92736, 92832, 92928, 93024, 93120, 93216, 93312, 93408, 93504, 93600, 93696, 93792, 93888, 93984, 94080, 94176, 94272, 94368, 94464, 94560, 94656, 94752, 94848, 94944, 95040, 95136, 95232, 95328, 95424, 95520, 95616, 95712, 95808, 95904, 96000, [...], 96
So the LCM for 48 and 96 is 96
Finding LCM for 48 and 96 by Prime Factorization
Another method to find LCM for numbers 48 and 96 is to list all Prime Factors for both numbers and multiply the highest exponent prime factors:
All Prime Factors of 48: 2, 2, 2, 2, 3 (exponent form: 24, 31)
All Prime Factors of 96: 2, 2, 2, 2, 2, 3 (exponent form: 25, 31)
25 × 31 = 96
Related Calculations
See Also
- Greatest Common Factor - Find the Greatest Common Factor (GCF) of two numbers
LCM Table
About "Least Common Multiple" Calculator
Least Common Multiple (LCM) also known as the Lowest Common Multiple or Smallest Common Multiple of 2 numbers - it is the smallest positive integer that is divisible by both numbers